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A coupling lattice Boltzmann equation �LBE� model with multiple relaxation times is proposed for thermal
flows with viscous heat dissipation and compression work. In this model the fixed Prandtl number and the
viscous dissipation problems in the energy equation, which exist in most of the LBE models, are successfully
overcome. The model is validated by simulating the two-dimensional Couette flow, thermal Poiseuille flow,
and the natural convection flow in a square cavity. It is found that the numerical results agree well with the
analytical solutions and/or other numerical results.
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I. INTRODUCTION

The lattice Boltzmann equation �LBE� method has been
considered as a powerful numerical tool for simulating com-
plex athermal or isothermal fluid flows and associated trans-
port phenomena �1,2�. LBE was first proposed as a numerical
scheme by McNamara and Zanetti �3�, which obtained a
smoother macroscopic behavior than the lattice gas. Unlike
conventional numerical schemes based on discretization of
the macroscopic continuum equation, the LBE is based on
the microscopic or mesoscopic kinetic equation. The main
ideas for LBE can be manifested by two aspects: One is that
it treats the fluid on a statistical level and the particle density
distribution function is solved by a discrete Boltzmann equa-
tion; another is to construct a simplified kinetic model that
can represent the essential physics of microscopic or mesos-
copic processes so that the macroscopic averaged properties
can obey the desired macroscopic equations.

Because of the advantages of the LBE and easy boundary
treatment, LBE has been applied to thermal flows. To clearly
understand the mechanism of the thermal flows, recently,
three categories of thermal LBE models have been proposed,
i.e., the multispeed �MS� approach, the double-distribution-
function �DDF� approach, and the hybrid approach. The MS
approach is a straightforward extension of the athermal LBE
for isothermal flows �4–15�, which obeys the Boltzmann
equation; the DDF approach utilizes two different distribu-
tion functions, one for the velocity field and the other for the
temperature or internal energy field �16–24�; the hybrid ap-
proach can be considered as another version of the DDF
approach �25�. Nevertheless, the energy equation in the hy-
brid approach is solved by different numerical methods
rather than by LBE.

However, the application of MS, DDF, and hybrid ap-
proaches for thermal flows still has many challenges. The
fundamental problem with most of the MS models is the
insufficient truncation in the equilibrium distribution func-
tion and the lack of isotropy in the lattice model �26,27�.
Furthermore, the fixed Prandtl number exists in most of the
MS models, although this problem has been overcome by
some modified models. Nevertheless, in most of the existing

improved MS models �except for Ref. �28��, the viscous co-
efficient in the energy equation is not consistent with that in
the momentum equation �29–31� as Pr�1: The transport co-
efficient of the viscous term appearing in the energy equation
is the thermal conductivity rather than the shear viscosity. On
the other hand, although the DDF models have improved
numerical stability and can overcome the fixed Prandtl num-
ber problem, the DDF based approaches rely on the conve-
nient mathematical artifacts whose purpose is merely to re-
cover the three conservation equations at the continuum
level, and the viscous heat dissipation and compression work
done by the pressure were ignored by most of the models
except for those proposed in Refs. �18–20�. Furthermore, all
of the existing DDF models are “decoupling� models, i.e.,
the momentum equation adopts an equation of state with a
constant temperature. This decoupling between the energy
and momentum equations may result in a large error when
applied to problems where the temperatures have significant
influences on the velocity field. In the hybrid approach, the
energy equation is solved by other numerical methods and
the flow simulation was not only decoupled from the energy
equation, but also usually ignored the viscous dissipation
term and compression work.

It should be pointed out that, to the authors’ knowledge,
the improved MS model in Ref. �28� has firstly removed the
inconsistent viscous problem between the momentum equa-
tion and the energy equation. However, to obtain the correct
thermohydrodynamic equations, the third-order moments—
the eigenvector of the collision matrix, of which the corre-
sponding eigenvalue is related to thermal conductivity—are
not in the frame of the lattice but the moving fluid �28�. This
local varying eigenvector may require the collision operator
to be varied locally and may be the reason for its few appli-
cations. The detailed analysis of this model can be found in
Ref. �28�.

Up to date, most of the LBE models adopt the BGK col-
lision model �32� which is approximated by a relaxation pro-
cess with a single relaxation time. What should be mentioned
is that the LBE models with multiple relaxation times �MRT�
have also attracted much attention in recent years. Due to
their apparent advantages over the BGK model �32�, the
MRT-LBE models have been successfully applied to a vari-
ety of isothermal flows �33–36� and recently formulated in a
more general fashion �37�.

Compared with the BGK model, the additional freedoms
in the MRT model, i.e., different physical modes can be ma-*Corresponding author; zlguo@hust.edu.cn
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nipulated independently in the moment space, provide a pos-
sible way to couple the momentum and temperature for ther-
mal flows. The aim of this paper is to propose a coupling
thermal MRT �TMRT� LBE model in the framework of
single distribution function �SDF� in which the viscous dis-
sipation and compression work are considered and the veloc-
ity and temperature fields are coupled.

The rest of the paper is organized as follows. In Sec. II,
the TMRT model is proposed, and then a boundary condition
for the model is introduced in Sec. III; some numerical tests
are conducted in Sec. IV, and finally a brief summary is
presented in Sec. V.

II. THERMAL MULTIPLE-RELAXATION-TIME MODEL

A LBE with multiple relaxation times can be expressed as
�34�

f i�x + ci�t,t + �t� − f i�x,t�

= − �
�

Si��f� − f�
eq� + �t�

�
��i� −

Si�

2
�F�, �1�

for i=0,1 , . . . ,b−1, where f i�x , t� is the density distribution
function for the molecules moving with a discrete velocity ci
at point x and time t, S is the collision matrix, �t is time step,
f i

eq is the equilibrium distribution function, and Fi is the forc-
ing term given by �20,38�

Fi = �i�� ci · a

RT
+

�ci · u��ci · a�
RT2 −

a · u

RT
� ,

where a is the acceleration, �i is the weight coefficient de-
pendent on the model, R and T are the gas constant and
temperature, respectively.

In LBE, the flow variables �density, momentum, and total
energy� are defined as the velocity moments of distribution
functions

� = �
i

f i, �2�

�u = �
i

cif i +
�t

2
�a , �3�

�E = �
i

ci
2

2
f i +

�t

2
�u · a . �4�

The evolution of the LBE �1� can be decomposed into two
substeps. i.e., the collision process,

f i
+ = f i�x,t� − �

�

Si��f� − f�
eq� + �t�

�
��i� −

Si�

2
�F�, �5�

and the streaming process,

f i�x + ci�t,t + �t� = f i
+.

The collision substep is not easy to carry out in the veloc-
ity space because S is usually a full matrix. As shown in
Refs. �33,34�, it becomes convenient when the collision pro-

cess is carried out in the moment space. To this end, we first
define some moments m based on the distributions f�x , t�
through a linear transformation,

m = Mf = �m0,m1, . . . ,mb−1�T,

f = M−1m = �f0, f1, . . . , fb−1�T,

where M is a linear transformation which can be constructed
from the discrete velocity set via the Gram-Schmidt orthogo-
nalization procedure �25,33,34�. The conserved and noncon-
served physical properties are clearly described in this pro-
cess, including the density, the momentum, the kinetic
energy, the energy flux, the viscous stress tensor, and so on.
Therefore, by multiplying Eq. �5� by the linear transforma-
tion matrix M, the collision in the moment space is now

mi
+ = mi − �

�

S̃i��m� − m�
eq� + �t�

�

��i� −
S̃i�

2
�F̃�, �6�

where m+=Mf+, meq=Mfeq is the equilibrium in the mo-

ment space, S̃=MSM−1 is the corresponding collision matrix

in the moment space and F̃=MF.
It is noted that, to recover the Navier-Stokes-Fourier

equations in the framework of SDF, the equilibrium of den-
sity distribution function should satisfy several conditions
�4�, or a lattice with sixth-order isotropy is required �5,6�. In
this work we propose the following 17-velocity set �D2Q17�
that fulfills these conditions for two-dimensional flows �see
Fig. 1�:

ci

=�
�0,0� , i = 0,

	cos��i − 1��/2�,sin��i − 1��/2�
c , i = 1 – 4,

	cos��2i − 9��/4�,sin��2i − 9��/4�
�2c , i = 5 – 8,

	cos��i − 1��/2�,sin��i − 1��/2�
2c , i = 9 – 12,

	cos��2i − 9��/4�,sin��2i − 9��/4�
2�2c , i = 13 – 16,
�

�7�

where c=�x /�t=1, with �x as the lattice space.
Based on these velocity vectors, we can construct a trans-

formation matrix M via the Gram-Schmidt process proposed
by �25,33,34�
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FIG. 1. Discrete velocities of D2Q17 model.
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M =

⎝
⎜
⎜
⎜
⎛

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 − 1 0 1 − 1 − 1 1 2 0 − 2 0 2 − 2 − 2 2

0 0 1 0 − 1 1 1 − 1 − 1 0 2 0 − 2 2 2 − 2 − 2

− 60 − 43 − 43 − 43 − 43 − 26 − 26 − 26 − 26 8 8 8 8 76 76 76 76

0 1 − 1 1 − 1 0 0 0 0 4 − 4 4 − 4 0 0 0 0

0 0 0 0 0 1 − 1 1 − 1 0 0 0 0 4 − 4 4 − 4

620 190 190 190 190 − 131 − 131 − 131 − 131 − 446 − 446 − 446 − 446 232 232 232 232

− 16 740 2248 2248 2248 2248 7226 7226 7226 7226 − 6403 − 6403 − 6403 − 6403 1114 1114 1114 1114

84 − 64 − 64 − 64 − 64 56 56 56 56 − 14 − 14 − 14 − 14 1 1 1 1

0 − 4 4 − 4 4 0 0 0 0 1 − 1 1 − 1 0 0 0 0

0 0 0 0 0 − 4 4 − 4 4 0 0 0 0 1 − 1 1 − 1

0 − 14 0 14 0 − 11 11 11 − 11 − 10 0 10 0 14 − 14 − 14 14

0 4 0 − 4 0 1 − 1 − 1 1 − 5 0 5 0 1 − 1 − 1 1

0 32 0 − 32 0 − 28 28 28 − 28 14 0 − 14 0 − 1 1 1 − 1

0 0 − 14 0 14 − 11 − 11 11 11 0 − 10 0 10 14 14 − 14 − 14

0 0 4 0 − 4 1 1 − 1 − 1 0 − 5 0 5 1 1 − 1 − 1

0 0 − 32 0 32 28 28 − 28 − 28 0 − 14 0 14 1 1 − 1 − 1
⎠
⎟
⎟
⎟
⎞

.

�8�

With this transformation matrix, we can obtain 17 velocity
moments given by

m = Mf

= ��, jx, jy,E�,pxx,pxy,	,h,H,�xx,�xy,qx,
x,�x,qy,
y,�y�T,

which have clear physical significance: m0 is the mass den-
sity � �zeroth-order moment�, m1 and m2 are the components
of momentum, jx and jy �first-order moment�, m3=E� is re-
lated to the total energy E �second-order moment�. The rest
moments are related to the stress tensor pxx and pxy �second-
order moment�, energy square 	 �fourth-order moment�, en-
ergy cubic h �sixth-order moment�, energy quartic H �eighth-
order moment�, fourth-order moment �xx, fourth-order
moment �xy, x component of the energy flux qx �third-order
moment�, x component of the fifth-order moment 
x, x com-
ponent of the seventh-order moment �x, y component of the
energy flux qy �third-order moment�, y component of the
fifth-order moment 
y, and y component of the seventh-order
moment �y, respectively.

As suggested in Ref. �34�, the nonconserved moments re-
lax linearly towards their equilibrium values that are func-
tions of the conserved quantities. Therefore, for the D2Q17
model, the collision process �6� is operated by the following
relaxation equations:

m+ = m − S̃�m − meq� + �t�I −
S̃

2
�F̃ , �9�

where S̃ is the diagonal relaxation matrix in moment space,

S̃ = diag	s0,s1, . . . ,s16
 , �10�

and the equilibrium moments mi
eq can be constructed accord-

ingly as

meq = ��, jx, jy,E�,pxx
eq,pxy

eq,	eq,heq,Heq,�xx
eq,�xy

eq,qx
eq,
x

eq,�x
eq,

qy
eq,
y

eq,�y
eq�T,

with si �i=0,1 , . . . ,16� as the relaxation rate, and the corre-
sponding equilibria of the conserved and nonconserved mo-
ments can be constructed as

m0
eq = � , �11�

m1
eq = jx = �ux, �12�

m2
eq = jy = �uy , �13�

m3
eq = E� = ��� + �E� , �14�

m4
eq = pxx

�eq� = ��ux
2 − uy

2� , �15�

m5
eq = pxy

�eq� = �uxuy , �16�

m6
eq = 	xx

�eq�

= −
109�30� + E�/2�

3
−

31E�

3
+ 436���� + u2� +

109�u4

2
,

�17�

m7
eq = h�eq� = 0, �18�
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m8
eq = H�eq� = 0, �19�

m9
eq = �xx

�eq� = −
65

12
+

17

2
�� +

u2

6
��pxx

�eq�, �20�

m10
eq = �xy

�eq� = −
65

12
+

17

4
�� +

u2

6
��pxy

�eq�, �21�

m11,14
eq = qx,y

�eq� = �− 17� + 6��� + E��ux,y , �22�

m12,15
eq = 
x,y

�eq� = �c1 + ax,y� + bx,yux,y
2 ��ux,y + cx,ypxy

�eq�ux,y ,

�23�

m13,16
eq = �x,y

�eq� = �dx,y + ex,y� + fx,yux,y
2 ��ux,y + gx,ypxy

�eq�uy,x,

�24�

where �=RT is the internal energy. The parameters in the
equilibrium are given as

� = − 60, � = 34, 4dx − 62c1 = − 221, dx = − dy ,

ax −
2ex

31
= −

249

62
, bx −

2fx

31
= −

101

62
, cx −

2gx

31
=

27

31
,

ay +
2ey

31
= −

249

62
, by −

2fy

31
= −

101

62
, cy +

2gy

31
=

27

31
.

With the equilibria given by Eqs. �11�–�24�, the thermo-
hydrodynamic equations can be recovered from the LBE
through the Chapman-Enskog expansion �see the Appendix
for details�,

�t� + � · ��u� = 0, �25�

�t��u� + � · ��uu� = − �p + � · 1 + �a , �26�

�t��E� + � · ��p + �E�u� = � · �� � T� + � · �2 · u� + �u · a ,

�27�

where 1=��S− �� ·u�I�, 2= 1
2��S− �� ·u�I� �S��=��u�

+��u��, with

� = ��� 1

s4
−

1

2
��t , �28�

� = 2��� 1

s11
−

1

2
��t , �29�

p = �� , �30�

It is obvious that this MRT LBE model can gain an arbi-
trary Prandtl number Pr=cp� /�, with cp being the specific

heat ratio at constant pressure, by adjusting the relaxation
rates s4 and s11. However, it is noted that the viscous coeffi-
cient in the viscous dissipation term of the energy equation
�27� is incorrect. Fortunately, with the benefit of using MRT,
the collision process of each moment can be manipulated
independently in the moment space. Motivated by the idea of
Guo et al. �20�, we propose to modify the collision process
of the two moments related to the energy flux as

qx
+ = qx − s11�qx − qx

eq� + �t�1 − s11/2�F̃11 + �1 − s11/2�qx
�,

�31�

qy
+ = qy − s14�qy − qy

eq� + �t�1 − s11/2�F̃14 + �1 − s14/2�qy
�,

�32�

where qx
� and qy

� are given as

qx
� = a1uxpxx

�1� + a2uypxy
�1�, �33�

qy
� = b1uxpxy

�1� + b2uypxx
�1�, �34�

where a1=3�Pr−1�s4, a2=b1=2a1, b2=−a1 and p��
�1� is ap-

proximated as p��
�1� � p��− p��

�eq�. With this modification, we
are able to get the following correct thermohydrodynamic
equations:

�t� + � · ��u� = 0,
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−T
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(T
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Pr=0.25

FIG. 2. Temperature profile of the Couette flow for Ec=8. Solid
lines are analytic solutions and circles are numerical results.
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FIG. 3. Temperature profile of the Couette flow for Pr=0.5.
Solid lines are the analytic solutions and circles are numerical
results.
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�t��u� + � · ��uu� = − �p + � · 1 + �a ,

�t��E� + � · ��p + �E�u� = � · �� � T� + � · �1 · u� + �u · a ,

III. BOUNDARY CONDITION FOR TMRT MODEL

Boundary conditions for the lattice Boltzmann method
have been studied extensively �39–41�. In order to transform
a thermohydrodynamic boundary condition to the boundary
distribution functions, we employ the nonequilibrium-
extrapolation approach in this work due to its simplicity,
second-order accuracy, and good robustness �42�.

The basic idea of the nonequilibrium extrapolation can be
interpreted as follows. At a boundary node xb the distribution
function can be decomposed into an equilibrium part and a
nonequilibrium part, that is,

f i�xb,t� = f i
�eq��xb,t� + f i

�neq��xb,t� .

For a boundary where u�xb , t� and E�xb , t� at xb are
known, but ��xb , t� is unknown, as an example, we use a
temporary density �̄�xb , t� instead of the ��xb , t� in the equi-
librium distribution function

�̄�xb,t� = 3��xf,t� − 3��xf f,t� + ��xf f f,t� ,

where xf f and xf f f are the nearest nodes in the vertical direc-
tion to the xf and xf f, respectively. As such, the equilibrium
distribution function at xb can be approximated as

f i
�eq��xb,t� = f i

�eq���̄�xb,t�,u�xb,t�,E�xb,t�� .

For the nonequilibrium part, we approximate it by the non-
equilibrium part of the neighboring node xf,

f i
�neq��xb,t� = f i�xf,t� − f i

�eq��xf,t� .

As a whole, the final distribution function at the boundary
node xb is given by

f i�xb,t� = f i
�eq��xb,t� + �f i�xf,t� − f i

�eq��xf,t�� . �35�

It has been demonstrated that the nonequilibrium extrapo-
lation scheme is of second-order accuracy in space �42�.

IV. NUMERICAL TESTS

In this section, we conduct a series of numerical simula-
tions to validate the proposed TMRT LBE model. For sim-
plicity, the parameters in the equilibrium are chosen as ex
= fx=gx=ey = fy =gy =0 and others can be determined by their

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

y/
h

u
x
/c

FIG. 4. Velocity profile of the thermal Poiseuille flow for
Pr=0.71. Right to left: Ec=0.01, 50, 100, and 150. Solid lines are
the reference analytic solutions and circles are numerical results.
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FIG. 5. Temperature profile of the thermal Poiseuille flow for
Pr=0.71. �a�–�d� Ec=0.01, 50, 100, and 150. Solid lines are the
reference analytic solutions and circles are numerical results.
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FIG. 6. Density profile of the thermal Poiseuille flow for
Pr=0.71. �a�–�d� Ec=0.01, 50, 100, and 150. Solid lines are the
reference analytic solutions and circles are numerical results.
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FIG. 7. Velocity profile of the thermal Poiseuille flow for
Ec=50. Right to left: Pr=0.4 and 3. Solid lines are the reference
analytic solutions and circles are numerical results.
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relations. The relaxation rates for conserved and noncon-
served quantities, except for s4 and s11, are given by 0 and
1.0, respectively. The testing problems include the Couette
flow, Poiseuille flow, and the natural convection in a square
cavity.

A. Thermal Couette flow

The Couette flow with a temperature gradient provides a
good test of the ability of our TMRT model. With the bottom
wall fixed and the top wall moving at speed U=0.1, the
temperature profile can be described as

T − Tc

Th − Tc
= y� +

PrEc

2
y��1 − y�� , �36�

where Tc and Th are the bottom and top wall’s temperatures,
respectively, y�=y /h is the normalized distance from the bot-
tom boundary, and h is the height of the channel.

The thermal Couette flow is characterized by the Prandtl
number Pr and the Eckert number Ec=U2 /cp�Th−Tc�. In our
simulations, we carried out the simulation on an 8�64 lat-
tice for different values of Pr and Ec with s4

−1=1.1 and Tc
=0.6. Other parameters can be determined from the nondi-
mensional parameters. Periodic boundary conditions are ap-
plied to the inlet and outlet, and the nonequilibrium-
extrapolation method is applied to the top and bottom walls.

The temperature profiles for Ec=8 with Pr varying from
0.25 to 2.5 are shown in Fig. 2, while the temperature pro-
files for Pr=0.5 with Ec varying from 4 to 40 are shown in
Fig. 3. It is clearly shown that the numerical results are in
excellent agreement with the analytical solutions, and the
viscous heat effects are successfully captured by the present
TMRT model over a wide range of the values of Pr and Ec.
Our numerical tests also indicate that the present LBE model
is stable for the Couette flow as the temperature varies from
0.5 to 1.1, which is comparable to those of other MS models.

B. Thermal Poiseuille flow

The thermal Poiseuille flow in a planar channel consid-
ered here is driven by a constant force a, and the tempera-
tures of the bottom and top walls are kept at Tc and Th,
respectively. In the thermal Poiseuille flow, the density � is
not a constant but varies across the section since the momen-
tum equation is coupled with the energy equation, and no
analytic solutions for the velocity and temperature profiles
are available. For comparisons, we first obtained numerical
solutions of the thermohydrodynamic equations using a
second-order finite-difference scheme as a reference.

The thermal Poiseuille flow is characterized by Reynolds
number Re=�rhur /�r, Prandtl number, and Eckert number
Ec=ur

2 /cp�Th−Tc�, with reference �r and �r measured at Tr
= �Th+Tc� /2, ur=�rah2 /8�r, and h being the channel height.
We carried out a set of simulations for different values of Pr
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FIG. 8. Velocity profile of the thermal Poiseuille flow for
Ec=0.01. Solid lines are the reference analytic solutions and circles
are numerical results.
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FIG. 9. Temperature profile of the thermal Poiseuille flow for
Ec=50. �a�–�d� Pr=0.4, 1, 2, and 3. Solid lines are the reference
analytic solutions and circles are numerical results.
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FIG. 10. Density profile of the thermal Poiseuille flow for Ec
=50. �a�–�d� Pr=0.4, 1, 2, and 3. Solid lines are the reference ana-
lytic solutions and circles are numerical results.
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FIG. 11. Streamlines at Ra=103.
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and Ec with Re=20, Tc=0.6, and ur=0.1. We first study the
case when Pr=0.71 with Ec ranging from 0.01 to 150. In our
simulation, an 8�64 lattice is employed, and other param-
eters are determined from the nondimensional parameters.
The boundary treatment is the same as that used in the Cou-
ette flow. The velocity, temperature, and density profiles are
shown in Figs. 4–6, respectively. It is clearly seen that tem-
perature and density increase with Ec. However, due to the
small temperature difference, except for Ec=0.01, the veloc-
ity profiles are almost overlapped when Ec=50, 100, and 150
�see Fig. 4�.

We also conduct a series of simulations for Ec=50 while
Pr varies from 0.4 to 3. As can be seen from Fig. 7, the
velocity profiles do not overlap as Pr=0.4 and 3. To see more
clearly this difference, we conduct the numerical test for
Ec=0.01 with Pr=0.1 and Pr=10, and the velocity profiles
are shown in Fig. 8. The reason for this phenomenon is at-
tributed to the temperature-dependent viscous coefficient.
The temperature profiles for different values of Pr are shown
in Fig. 9, and the density profiles are shown in Fig. 10. It is
clearly seen that the numerical results are in excellent agree-
ment with the reference numerical solutions. It is again ob-
served from Fig. 10 that the density profiles are not a con-
stant but vary across the channel. This is due to the coupling
between the velocity and energy fields, and thus such non-
linear phenomena will not appear in a decoupling LBE
model.

In the simulations, it is also observed that the y-direction
component velocity, uy, is nonzero �uy /ur�10−4� as the tem-
perature variation becomes large �e.g., Ec=0.01�. This

spurious velocity may be due to the boundary condition
treatment for the unknown density distribution functions at
the walls. It is noted that the similar phenomena was also
observed by other LBE models in Ref. �43�. This unphysical
artifact may be removed by using other more accurate
schemes.

C. Natural convection flow

The natural convection flow in a square cavity has been
studied using the decoupling LBM �17,20,21�. In this prob-
lem, the two side walls are kept at temperatures Th and Tc,
respectively, with Tc�Th, while the bottom and top walls are
adiabatic. For the boundary conditions, the two side walls
with constant temperatures are treated by the
nonequilibrium-extrapolation method, but for the adiabatic
boundary condition at the bottom or the top wall, the tem-
perature at the boundary node xb is first obtained by dis-
cretizing the macroscopic boundary condition, dT /dy=0, us-
ing a finite-difference scheme, and then we use this
temperature in the nonequilibrium-extrapolation boundary
condition. Such a treatment was also used in previous studies
�17,20�.

The convection flow induced by the temperature differ-
ence is characterized by the Prandtl Pr and the Rayleigh
number,

Ra =
gH3�Th − Tc�

Tc�c�c
,

where �c and �c are the values of the transport coefficients
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FIG. 12. Streamlines at Ra=104.
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FIG. 13. Streamlines at Ra=105.
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FIG. 14. Isothermal lines at Ra=103.
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FIG. 15. Isothermal lines at Ra=104.
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measured at temperature Tc, H is the height of the cavity, and
g is the gravity acceleration.

We carried out our simulations on a 128�128 mesh for
Pr=0.71 with Ra varying from 103 to 105. The nondimen-
sional temperature difference �Th−Tc� /Tc is set to be within
5%. It is noted that the present MRT-LBE model is a cou-
pling model and the Boussinesq approximation is not neces-
sary.

The streamlines and isothermal lines predicted by the
present model are shown in Figs. 11–16. From the figures, it
is shown that for low values of Ra, a central vortex appears
as the typical features of the flow. The vortex tends to be-
come elliptic as Ra increases, and breaks up into two vortices
at Ra=105. All of these observations are in good agreement
with the results reported in previous studies �20,44�. For a
quantitative comparison, the average Nusselt numbers are
measured and listed in Table I. The numerical results are in
quantitative agreement with those reported in previous stud-
ies �20,44�, but some small differences in the average Nus-
selt numbers are also noticed, which may be the effects of
the viscous dissipation and the work of the pressure in our
model.

The normalized velocity profiles ux �uy� in Fig. 17 �Fig.
18� recovered with the TMRT model along the vertical �hori-
zontal� lines, and in Fig. 19 the temperature profiles along
the horizontal line crossing the center of the cavity are also
compared with the numerical results in the literature �45�. As
shown in Figs. 17 and 18, the maximum value of ux�uy�
along the vertical �horizontal� lines increases as Ra becomes
large. Figure 19 indicates that the heat transfers mainly by
conduction between the hot and cold walls for small Ra.
When Ra becomes large, the dominant heat transfer mecha-
nism changes from conduction to convection, and the heat
transfer becomes large at the thin boundary layers near the

hot and cold walls. It is also clearly seen from Figs. 17–19
that the numerical results of the present LBE model agree
well with those reported in Ref. �45�.

V. CONCLUSION

In this paper, we have developed a LBE model with mul-
tiple relaxation times for thermal flows. The model exhibits
several features that distinguish it from other previous LBE
models. First, unlike previous thermal LBE models, the
present model does not suffer from the fixed Prandtl number
problem due to the use of multiple relaxation times; second,
the inconsistency existing in the viscous terms in the mo-
mentum and energy equations is also successfully overcome
by modifying the collision processes of the moments related
to the energy flux; finally, the energy momentum equations
derived from the present model are physically coupled,
which makes it feasible for non-Boussinesq flows.

Some numerical simulations have been carried out to vali-
date the proposed MRT LBE model. It is found that the
results predicted by the present TMRT model are in excellent
agreement with the analytical solutions and/or other numeri-
cal results.

TABLE I. The average Nusselt number.

Ra

Nu

Present Reference �20� Reference �44�

103 1.174 1.119 1.116

104 2.266 2.254 2.244

105 4.528 4.527 4.521
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FIG. 16. Isothermal lines at Ra=105.
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FIG. 17. Normalized velocity profile for ux along the center line
of the cavity in the y direction. Symbols are from Ref. �45�, lines
are the LBE results. Asterisk and dashed-dotted line, Ra=103; cross
and dashed line, Ra=104; open circle and solid line, Ra=105.
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FIG. 18. Same as Fig. 17 but for the normalized velocity profile
for uy along the center line of the cavity in the x direction.
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APPENDIX: CHAPMAN-ENSKOG ANALYSIS FOR
THERMAL MULTIPLE-RELAXATION-TIME MODEL

We now make an analysis for the TMRT model using the
Chapman-Enskog expansion method �46�. To this end, we
introduce the following expansions:

f i = �
n�0

Knfi
�n�, �A1�

�t = �
n�0

Kn�tn
, �A2�

f i�x + ci�t,t + �t� = �
n�0

Kn ��t + ci · ��n

n!
f i�x,t� , �A3�

where K is the expansion parameter, which is equal to �t.
Through the above expansions, we can obtain the follow-

ing relationship for Eq. �1� with the zeroth-, first-, and
second-order expansions in K:

f i
�0� = f i

�eq�, �A4�

��t0
+ ci · ��f i

�0� = − �
�

Si�f�
�1� + Fi, �A5�

�t1
f i

�0� + ��t0
+ ci · ���

�
�Ii� −

Si�

2
� f�

�1�� = − �
�

Si�f�
�2�.

�A6�

The corresponding equations in the moment space can be
obtained

mi
�0� = mi

�eq�, �A7�

��t0
+ c̃i�i�m�0� = S̃m�1� + F̃ , �A8�

�t1
m�0� + ��t0

+ c̃i�i��I −
S̃

2
�m�1� = − S̄m�2�, �A9�

where c̃i=M�ci�I�M−1 and

m�1� = �0,0,0,0,pxx
�1�,pxy

�1�,	�1�,�xx
�1�,�xy

�1�,h�1�,H�1�,qx
�1�,
x

�1�,

�x
�1�,qy

�1�,
y
�1�,�y

�1��T. �A10�

The first four equations for the conserved moments can be
written as

�t0
� + �x��ux� + �y��uy� = 0, �A11�

�t0
��ux� + �x��� + �ux

2� + �y��uxuy� = �ax, �A12�

�t0
��uy� + �x��uxuy� + �y��� + �uy

2� = �ay , �A13�

�t0
��E� + �x���� + �E�ux� + �y���� + �E�uy� = ��uxax + uyay� ,

�A14�

�t1
� = 0, �A15�

�t1
��ux� + �x1

2
�1 −

s4

2
�pxx

�1�� + �y�1 −
s5

2
�pxy

�1�� = 0,

�A16�

�t1
��uy� + �x�1 −

s5

2
�pxy

�1�� + �y1

2
�1 −

s4

2
�pxx

�1�� = 0,

�A17�

�t1
��E� + �x1

6
�1 −

s11

2
�qx

�1�� + �y1

6
�1 −

s14

2
�qy

�1�� = 0.

�A18�

Meanwhile,

− s4pxx
�1� = �t0

pxx
�eq� + 17

15��x��ux� − �y��uy��

− 47
465��xqx

�eq� − �yqy
�eq�� − 4

5 ��x
x
�eq� − �y
y

�eq��

+ 8
155��x�x

�eq� + �y�y
�eq�� − 2��uxax − uyay� ,

�A19�

− s5pxy
�1� = �t0

pxy
�eq� + 34

15��x��uy� + �y��ux��

+ 101
465��xqy

�eq� + �yqx
�eq�� + 2

5 ��x
y
�eq� + �y
x

�eq��

+ 4
155��x�y

�eq� − �y�x
�eq�� − ��uxay + uyax� , �A20�

− s11qx
�1� = �t0

qx
�eq� + 31

109�xE� − 47
17�xpxx

�eq�

+ 101
17 �ypxy

�eq� + 3
109�x	

�eq� + 18
17�x�xx

�eq� + 72
17�y�xy

�eq�

+ 	17�ax − 6��ux�uxax + uyay� + ��ax + �Eax�
 ,

�A21�
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FIG. 19. Same as Fig. 17 but for the temperature profile along
the center line of the cavity in the x direction.
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− s14qy
�1� = �t0

qy
�eq� + 31

109�yE� − 47
17�ypxx

�eq�

+ 101
17 �xpxy

�eq� + 3
109�y	

�eq� + 18
17�y�xx

�eq� + 72
17�x�xy

�eq�

+ 	17�ay − 6��uy�uxax + uyay� + ��ay + �Eay�
 .

�A22�

With the aid of Eqs. �A11�–�A14� and the equilibria of the
nonconserved moments, we could obtain pxx

�1�, pxy
�1�, qx

�1�, and
qy

�1� in Eqs. �A16�–�A18� as follows:

pxx
�1� = −

2

s4
����xux − �yuy� , �A23�

pxy
�1� = −

1

s5
����xuy + �yux� , �A24�

qx
�1� = −

6

s11
�2���x� −

s4

2
uxpxx

�1� − s5uypxy
�1�� , �A25�

qy
�1� = −

6

s14
�2���y� +

s5

2
uypxx

�1� − s5uxpxy
�1�� . �A26�

Combining Eqs. �A11�–�A18�, we are able to obtain the
thermohydrodynamic equations �25�–�27� with s4=s5 and
s11=s14. Finally, with the modified collision process, the cor-
rect thermohydrodynamic equations are recovered by Eqs.
�31� and �32�.
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